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Abstract. The effect of abulk marginal operator onboundarycritical phenomena in two space–
time dimensions is considered. The particular case of an openS = 1

2 antiferromagnetic Heisenberg
chain, corresponding to a Wess–Zumino–Witten nonlinearσ model, is solved. In this case, the
required renormalization group coefficient is associated with a novel operator product expansion
in which threeoperators approach the same point. Resulting logarithmic corrections occurring in
finite-size calculations and nuclear magnetic resonance experiments are discussed.

1. Introduction

Marginally irrelevant operators in two-dimensional conformal field theory (CFT) [1] lead to
logarithmic corrections to scaling behaviour. Because the corresponding coupling constant,
g(l), renormalizes to zero very slowly, as 1/ ln lwherel is a characteristic length or energy scale,
logarithmic corrections occur to virtuallyall quantities which can be measured experimentally
or simulated numerically. These create grave difficulties in obtaining agreement between
analytical theory and numerical simulations or experiment. The particular case of theS = 1

2
Heisenberg antiferromagnetic chain has been discussed extensively. The correlation function,
initially predicted to decay as 1/r, instead decays as(ln r)1/2/r [2,3]. To make matters worse,
the corrections to this result are only suppressed by additional powers of 1/ ln r and are highly
sensitive to finite-size effects. Similarly, the energy gap between the ground state and the first
excited (triplet) state behaves as [1]:

1E = 2πv

l

[
1

2
− πg(l)√

3

]
(1.1)

wherev is the spin-wave velocity. At very long lengths,

g(l)→
√

3

4π ln l
(1.2)

giving an additive logarithmic correction to the finite-size energy gap. It is generally very hard
to actually observe this logarithmic behaviour unless chains with length of several thousand
can be studied. Fortunately, this is possible for Bethe ansatz integrable models like the
S = 1

2 Heisenberg chain. For shorter chains it is generally better to regardg(l) as a free
parameter. Because equation (1.1) has been generalized to many other energy levels, all of
which receive corrections linear ing, this still has considerable predictive power. Indeed,
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fitting to expressions of this sort, which effectively subtracts off the leading logarithmic
correction to scaling, provides a practical method for numerically determining the universality
class of a Hamiltonian [2]. There are analogous finite-temperature corrections (for infinite-
length systems). These include an additive 1/ ln T correction to the susceptibility [4] and
a multiplicative (ln T )1/2 correction to the nuclear magnetic resonance (NMR) relaxation
rate, 1/T1 [5]. Although experimental data have been fitted to these forms with apparent
success [6, 7] this is a very difficult exercise due to the slow variation and the presence of
various other types of corrections in any real material.

Another subject of current experimental and theoretical interest is the general area of
quantum impurity problems (QIPs). In the context ofS = 1

2 Heisenberg antiferromagnetic
chains, such a problem occurs for a semi-infinite chain, associated with the dynamics at the
chain end [8]. This model can be realized experimentally by dilute substitution of the magnetic
ion by a non-magnetic one, e.g. Zn substitution for Cu. Related QIPs involve the Kondo
problem and tunnelling through a single impurity in a quantum wire (or quantum Hall effect
edge states). The general renormalization group (RG) treatment of these problems gives fixed
points corresponding to conformally invariant boundary conditions imposed on a given bulk
CFT (for a review see [9]). In general, in such a theory, the effective Hamiltonian contains
both bulk and boundary operators. The bulk terms contain integrals over the half-line whereas
the boundary terms occur at the impurity location,x = 0. Bulk behaviour is unaffected by
boundary dynamics, although it must be appreciated that the decay of Green functions away
from the boundary is itself part of the boundary critical phenomena. Time correlation functions
at the boundary also involve exponents which characterize the boundary condition, as does
the finite-size spectrum with non-periodic boundary conditions. Boundary interactions cannot
affect the renormalization of bulk coupling constants. In most treatments of these problems so
far, any renormalization of boundary interactions by bulk interactions has also been ignored.
The justification for this is that the bulk system has been assumed to be at a bulk RG fixed point.
Any bulk operators present, apart from the fixed point Hamiltonian itself, are irrelevant and
can be ignored at low energies. Thus, at least in principle, crossover between boundary fixed
points can be treated independently of bulk renormalization. Strictly speaking, this is only
justified when the energy scales associated with the boundary renormalization are much smaller
than those associated with the bulk irrelevant couplings. This approximation is particularly
bad when there are marginally irrelevant bulk interactions present since they renormalize to
zero logarithmically slowly. When marginally irrelevant bulk operators are present we should
expect logarithmic corrections to exponents and finite-size scaling. However, the detailed
form of these corrections is characteristic of the boundary condition and is not simply related
to the log corrections in the bulk theory, nor to the finite-size scaling with periodic boundary
conditions (PBCs).

It is the purpose of this paper to consider these logarithmic corrections to boundary critical
exponents and finite-size scaling with non-PBCs arising from a marginal bulk operator. In
the next section we calculate general formulae for the logarithmic corrections using CFT. In
section 3 we compare these formulae to results on the finite-size spectrum for anS = 1

2 chain
with open boundary conditions (OBCs), for lengths up to 2000, obtained from the Bethe ansatz.
In the final section we comment on the log corrections to correlation functions and the NMR
relaxation rate.

2. Conformal field theory results

As observed by Cardy [1], such logarithmic corrections generally result from corrections to
the anomalous dimensions of the various operators,φn, which are linear ing. The associated
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coupling constants,un, obey RG equations:

dun/d lnL = [2− γn]un + O(u2
n) (2.1)

where

γn = xn + 2πbng + · · · . (2.2)

Here the· · · represents terms of higher order ing or in other irrelevant operators. Taking into
account the fact thatg itself also renormalizes leads to predictions of the various logarithmic
corrections. In particular, the finite-size states are in one-to-one correspondence with the
operators and their energy gaps are proportional toγn. The coefficients,bn can be conveniently
determined from the operator product expansion (OPE) of the operatorφn with the marginal
operator,φ:

φ(z)φn(z
′)→ −bnφn(z)|z− z′|2 . (2.3)

A calculation of any Green function involvingφn, to the first order ing, encounters a logarithmic
ultraviolet divergence upon integratingz nearz′. This implies the correction to the anomalous
dimension in equation (2.2). The finite-size spectrum is given by

En − E0 ≈ 2πv

l
[xn + 2πbng(l)]. (2.4)

The scaling dimensionxn of the corresponding operator is simply corrected by the anomalous
dimension term of first order ing which is replaced by the effective coupling at scalel.

In the presence of a boundary, this calculation takes a rather unfamiliar turn because
the local marginal bulk operator, in general, becomesbilocal in the presence of a boundary
condition. This follows from Cardy’s general approach to conformally invariant boundary
conditions, which are always assumed to obey

TL(t, 0) = TR(t, 0) (2.5)

whereTL,R are the left- and right-moving terms in the energy momentum tensor. SinceTL,R
is a function of(t − x) [(t + x)] only, it then follows that we may regard the right movers on
the original physical spacex > 0 as the continuation of the left movers to the negative axis,

TR(x) = TL(−x) (x > 0). (2.6)

This observation allows the Hamiltonian to be written in terms of left movers only, but defined
on the entire real line. In particular, it implies that a generic local bulk operator, which can be
factorized into its left-moving and right-moving parts,O1

L(t − x) andO2
R(t + x) respectively,

becomesbilocal:

O(t, x) = O1
L(t, x)O

2
R(t, x)→ O1

L(t, x)O
2
L(t,−x). (2.7)

In particular, the bulk marginal operator becomes bilocal, introducing a novel complication
in calculating its effects perturbatively. Boundary operators are also drawn from the left-
moving sector only. We may determine the correction to the anomalous dimension of an
arbitrary boundary operator,8, to first order ing, from the three-point function〈8O8†〉,
whereO is the marginal bulk operator. However, this three-point function must be calculated
in the presence of the boundary condition, upon which it depends. Furthermore, we see
from equation (2.7) that this three-point function effectively becomes a four-point function of
left-moving operators.

In general, some data about the boundary condition will be needed to calculate this four-
point function. As will be seen from the example considered below, it is sufficient to know the
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OPE of the chiral part of the bulk marginal operator,O(z)with general boundary operators. We
consider a special case here, of some importance, for which this OPE can be readily calculated.

Let us consider the problem of anS = 1
2 Heisenberg chain with an OBC. The bosonized

form of this model, applicable at low energies, is thek = 1 Wess–Zumino–Witten (WZW)
nonlinearσ model. The marginal operator is quadratic in the chiral spin densities,EJL,R, and
is written as

H = H0 − g(8π2/
√

3) EJL · EJR. (2.8)

Here the spin densities are normalized as

〈J aL(z)J bL(0)〉 =
δab

8π2z2
. (2.9)

The factor of 8π2/
√

3 is inserted so that the operator multiplied byg in the Hamiltonian has
a unit-normalized two-point function, following the convention of Cardy [1]. The required
OPEs in this case follow from the basic one of the WZW model:

EJL(z)φ(z′) =
ESLφ(z)

2π(z− z′) + · · · . (2.10)

Here the general Virasoro primary operator,φ, may transform under an arbitrary representation
of SU(2)L × SU(2)R. The finite-dimensional matrices,SaL, are simply the representation of
SU(2) under whichφ transforms. Explicitly, ifφ transforms under the irreducible spinS
representation then there will be a multiplet of(2S + 1) operators,φA and

(ESLφ)A ≡
∑
B

ESABL φB. (2.11)

Thus,

EJL(z) · EJR(z)φ(z′) =
ESL · ESR

4π2|z− z′|2φ(z) + · · · (2.12)

and we see that the coefficientbn defined in equation (2.3) takes the value

bn = −2ESL · ESR√
3

. (2.13)

Now consider a semi-infinite chain with a free boundary condition at the origin. This
boundary condition was treated using bosonization in [8]. The boundary condition is not only
consistent with equation (2.6) but also with its Kac–Moody generalization:

EJR(x) = EJL(−x). (2.14)

Equations (2.6) and (2.14) imply that the correlation functions ofT (t, x) and EJ (t, x) are simply
the chiral correlation functions in the free WZW model. The boundary has no effect on them
apart from identifying left with right. The operator content and finite-size spectrum are drawn
from conformal towers of the left-moving Kac–Moody algebra only. It was shown in [8]
that, for an even-length chain, the spectrum consists of the identity conformal tower only. In
particular, the spin operator at the boundary becomes the (left-moving) spin density,EJL(t, 0)
of the WZW model with correlation function,∝ 1/t2. The finite-size spectrum, with free
boundary conditions at both ends of a chain of lengthl is given by

E − E0 = πv

l
xL (2.15)

wherexL is the scaling dimension of the corresponding (left-moving) operator. This differs
from the formula with PBCs, equation (2.4), by the replacement ofl by 2l corresponding to
doubling the system size due to the identification of equation (2.6) atx = 0 andx = l and to
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the replacement of the scaling dimensionx = xL + xR by a left-moving scaling dimensionxL
only.

Let us now consider the logarithmic corrections to this formula for OBCs. The problem
again reduces to finding the correction to the anomalous dimension of a given operator,φn, to
first order ing whereφn is now aboundaryoperator. We might again attempt to obtain this
from an OPE but we must deal with the fact that the marginal operator is nowbilocal. The
obvious generalization of equation (2.12) is

EJL(z) · EJL(z∗)φ(0) ≈
ESL · ESL
|2πz|2 φ. (2.16)

This is not a conventional OPE because we are bringingthreeoperators to the same point
rather than just two. However, as will be argued below, it is nonetheless correct. It is now easy
to calculate the correction to the anomalous dimension. A logarithmic ultraviolet divergence
is again encountered for any Green function involving the operatorφ, to first order ing from
integrating overz near zero. However, this is reduced by a factor of two relative to the bulk
case becausez is only integrated over the half-plane rather than the entire plane. A convenient
ultraviolet cut-off is given by restricting the z integral to|z| > a. In the bulk case the excluded
region is a circle of radiusa around the origin but in the boundary case it is only a semi-circle
of radiusa. Our conclusion is thus that the anomalous dimension of a boundary operator is
given by equation (2.2) but with the coefficientbn now given by

bn = −
ESL · ESL√

3
. (2.17)

This differs from the bulk formula (2.13) only by the identification ofESR with ESL and by the
extra factor of12 arising from the different integration region.

To complete our derivation we just need to justify the rather unorthodox three-operator
OPE occurring in equation (2.16). The validity of this formula can be understood by
considering the more general connected four-point function:

GAB = 〈 EJL(z1) · EJL(z2)φ
A(0)φB(τ)〉connected. (2.18)

We normalize the Virasoro primary boundary operator,φA, so that its two-point function is
given by

〈φA(0)φB(τ)〉 = δAB

(−τ)2xL . (2.19)

We wish to consider the short-distance singularity inGAB whenz1, z2 → 0. We claim that
this is given by

GAB →
ESL · ESL

4π2z1z2

δAB

(−τ)2x . (2.20)

The correctness of this result can be seen by considering the three different limits|z1| �
|z2|, |z1 − z2| and|z2| � |z1|, |z1 − z2| and|z1 − z2| � |z1|, |z2|. In the first case, we can
obtain the leading singularity by using the OPE ofEJL(z1) with φA(0) and then the OPE of the
result with EJL(z2). This gives equation (2.20). The same singularity is obtained in the second
case. In the third case there should be no singularity of the form 1/(z1 − z2) because there is
no singular term in the OPEEJL(z1) · EJL(z2) apart from the trivial one which does not contribute
to the connected Green function. These considerations uniquely fix all singularities inGAB at
z1, z2→ 0. Note that the crucial property of the boundary condition that is being used is that
the OPE of the spin-density operatorsJ zL with arbitrary (Virasoro primary) boundary operators
has the same form as in the bulk. Now lettingz1 = z, z2 = z∗ gives equation (2.16).
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In the particular case where theφA are the spin-density operators,J aL , we have calculated
Gab exactly and verified the form of the singularity. In this case we find

〈 EJL(z1) · EJL(z2)J
a
L(0)J

b
L(τ )〉 =

δab

(2π)4z1z2(τ − z1)(τ − z2)
. (2.21)

We see from equation (2.9) that the unit normalized operator isφa = 2π
√

2J a. Also, using
the fact thatEJ hasSL = 1 and thereforeESL · ESL = SL(SL + 1) = 2, we see that, in the limit
zi → 0, equation (2.21) agrees with equation (2.20).

Now let us consider the finite-size spectrum, examining the lowest energy excited state of
spinS. This is given by equation (2.15) except that the dimension of the (left-moving) field,
xL must be replaced by the anomalous dimension,γn. This is given by equation (2.2) withbn
now given by equation (2.17). Thus we obtain

E
open
S − Eopen

0 ≈ πv

l

[
S2 − 2πS(S + 1)g(l)√

3

]
. (2.22)

For exponentially long chains we may use the asymptotic form ofg(l): g(l)→√3/(4π ln l),
giving

E
open
S − Eopen

0 ≈ πv

l

[
S2 − S(S + 1)

2 ln l

]
. (2.23)

It is interesting to compare equation (2.23) with the corresponding result for PBCs [2]. If we
again consider the lowest energy state of given spinS, this hasSL = SR = S/2 and hence

E
per
S − Eper

0 ≈
2πv

l

[
S2

2
− S2

4 ln l

]
. (2.24)

The 1/l terms are the same for open and PBCs but the 1/ ln l terms are not. (We note that the
logarithmic corrections for OBCs were assumed to be same as the ones for PBCs in [10]).

We have also calculated the logarithmic correction to the ground state energy for OBCs.
Ignoring the irrelevant operator, the ground state energy for any one-dimensional Hamiltonian
which renormalizes to a CFT, defined on an interval of lengthlwith generic boundary conditions
at zero andl consistent with equation (2.6), is

E0(l) = e0l + e1− (πv/24l)c (2.25)

wherec is the central charge [11]. Note that the coefficient of 1/l is 1
4 times the value for

PBCs. Also note that an additional non-universal surface energy,e1 appears when the boundary
conditions are non-periodic. Logarithmic corrections to this formula can be calculated by doing
perturbation theory in the marginally irrelevant coupling constant,g(l) just as in the periodic
case. One finds that the correction of O(1/l) is universal. This must be separated from various
non-universal corrections toe0 ande1. Once the correction to the 1/l term of leading order in
g is calculated,g may be replaced by the effective coupling constant at scalel, g(l), resulting
in logarithmic corrections. In the case of PBCs, this leading correction was found to be O(g3).
By contrast, in the case of OBCs we find that it is O(g2).

Let us first consider the correction of O(g). From equation (2.8) this gives a correction to
the ground state energy

δE
(1)
0 =

−8π2g√
3

∫ l

0
dx〈 EJL(x) · EJL(−x)〉. (2.26)

This Green function is given in equation (2.9) for the casel→∞. We may obtain the Green
function for finite length by a conformal transformation

(τ ′ + ix ′) = e(π/l)(τ+ix) (2.27)
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giving

〈J aL(x)J bL(−x)〉 =
δab

8π2[ l
π

sin πx
l

]2
. (2.28)

The integral of equation (2.26) is ultraviolet divergent both atx = 0 andx = l. We may insert
an ultraviolet cut-off on the integration region,x > a, l− x > a wherea is of order the lattice
spacing. This gives the ground state energy correction of first order ing:

δE
(1)
0 = −2g

√
3
π

l
cot

πa

l
. (2.29)

Now Taylor expanding in powers ofa/l, we see that we obtain a cut-off dependent contribution
to the non-universal surface energy,e1 in equation (2.25), together with corrections of O(1/l2):

δE
(1)
0 ≈

−2g
√

3

a
+ O(a/ l2). (2.30)

Importantly, there is no term of O(1/l).
We now push this calculation to second order ing. This term is given by

δE
(2)
0 = −

1

2

[
8π2

√
3
g

]2 ∫ ∞
−∞

dτ
∫ l

0
dx1

∫ l

0
dx2〈 EJL(τ, x1) · EJL(τ,−x1) EJL(0, x2)

· EJL(0,−x2)〉. (2.31)

Let us first evaluate this expression in the limitl→∞. Using equation (2.21), we obtain

δE
(2)
0 →−

[
8π2

√
3
g

]2
3

(2π)4

∫ ∞
−∞

dτ
∫ ∞

0

dx1 dx2

[τ 2 + (x1− x2)2][τ 2 + (x1 + x2)2]
. (2.32)

Note that we have inserted a factor of two here because equal contributions arise fromx near
zero andx nearl. The x-integrals can be calculated exactly and are ultraviolet finite, for
non-zeroτ :

δE
(2)
0 →−

g2π2

2

∫ ∞
−∞

dτ

τ 2
. (2.33)

Theτ integral is ultraviolet divergent. We cut off the integral,|τ | > τ0, whereτ0 is of O(a/v).
This gives the second-order ground state energy correction:

δE
(2)
0 →−

g2π2

τ0
(2.34)

another cut-off dependent contribution to the surface energy,e1 in equation (2.25). To obtain
δE

(2)
0 at finitel, we again use the conformal transformation of equation (2.27) to obtain

δE
(2)
0 = −2g2

∫ ∞
−∞

dτ
∫ l

0

dx1 dx2 (π/2l)4

| sin(π/2l)[(x1− x2)2 + iτ ]|2| sin(π/2l)[(x1 + x2)2 + iτ ]|2 . (2.35)

Thexi integrals are again finite for non-zeroτ . We again cut off theτ integral at|τ | > τ0.
Noting that the integrand is symmetric underx1 → −x1 or x2 → −x2 and alsoτ → −τ , it
is convenient to extend thexi integrals from−l to l and reduce theτ integral fromτ0 to∞.
This introduces a net factor of1

2. It is now convenient to change the variables to

zj ≡ eiπxj / l (2.36)

and

u ≡ πτ/l. (2.37)
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The complex variables,zj , are integrated around the unit circle. This expression now becomes

δE
(2)
0 = −

g2π

l

∫ ∞
u0

du
∫
C

dz1

∫
C

dz2
z1

z2(z1− z2eu)(z1− z2e−u)(z1− z−1
2 eu)(z1− z−1

2 e−u)
(2.38)

whereu0 ≡ πτo/ l andC denotes the unit circle integration contour. Thez1 integral can now
be calculated by the standard contour integration method, with contributions from the poles at
z±1

2 e−u. The result is

δE
(2)
0 = −2π ig2π

l

∫ ∞
u0

du cothu
∫
C

dz2
z2

(z2
2 − e2u)(z2

2 − e−2u)
. (2.39)

Also calculating thez2 integral by contour methods gives

δE
(2)
0 = −π2g2(π/l)

∫ ∞
u0

du

sinh2(u)
. (2.40)

Finally, performing this elementary integration gives

δE
(2)
0 = −2π2g2(π/l)

1

e2u0 − 1
≈ −π

2g2

τ0
+ π2g2π

l
+ O(τ0/l

2). (2.41)

We have recovered the same cut-off dependent correction to the surface energy,e1 as in
equation (2.34). More importantly, we have also obtained a term of O(1/l) which is cut-off
independentand therefore is expected to be universal. Thus, we obtain the log correction to
the ground state energy with OBCs:

E
open
0 (l) ≈ e0l + e1− πv

24l
[1− 24π2g(l)2]. (2.42)

For exponentially largel we may use equation (1.2) to write

E
open
0 (l) ≈ e0l + e1− πv

24l

[
1− 9/2

(ln l)2

]
. (2.43)

As usual, the corrections to these formulae are only down by additional powers ofg(l), that is
1/ ln l. The corresponding formula for PBCs is

E
per
0 (l) ≈ e0l − πv

6l
[1 + (2π)3g(l)3/

√
3] ≈ e0l − πv

6l

[
1 +

3/8

(ln l)3

]
. (2.44)

Among other differences, note that the log correctionsdecreasethe apparent value ofc for
OBCs butincreaseit for PBCs. The fact that the correction toc goes like 1/(ln l)2 for OBCs
was obtained from the Bethe ansatz in [12], although the coefficient was not obtained.

3. Numerical results on finite-size spectrum

One application of the above results for boundary critical phenomena is to the numerical study
of finite-size scaling. We extract estimates ofg(l) defined in equations (2.22) and (2.42) from
the energies of finite-size spin-1

2 antiferromagnetic Heisenberg open chains. The Hamiltonian
is

H =
l−1∑
i=1

Si · Si+1 (3.1)

where theSi are spin-12 operators. The Bethe ansatz equations [13] for the Hamiltonian of
equation (3.1) are(

3k + i/2

3k − i/2

)2l

=
M∏
j 6=k

3k −3j + i

3k −3j − i

3k +3j + i

3k +3j − i
(3.2)
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wherel is the number of sites in the open chain. The roots can be numerically calculated [16].
The number of roots,M, determines the totalSz component through the relationSz = L/2−M.
In terms of the solutions,3k, to the Bethe ansatz equations (3.2), the energy is given by

E = l − 1

4
− 1

2

M∑
k=1

1

32
k + 1/4

. (3.3)

The surface energye1 = (π − 1 − 2 ln 2)/4 for the two ends of open chain can be
exactly obtained. The rapidities{3k, k = 1, l/2} solving the Bethe ansatz equations (3.2)
for the ground state of the open chain are all bigger than zero. Let us order3k so that
31 > 32 > · · · > 3l/2−1 > 3l/2 > 0. We can construct another set of rapidities
{3′k, k = 1, l}:

3′j = −3j 3′l+1−j = 3j for j = 1 to l/2 (3.4)

which solves exactly the following Bethe ansatz equations for a periodic chain of length 2l +1:(
3′k + i/2

3′k − i/2

)2l+1

=
l∏

j 6=k

3′k −3′j + i

3′k −3′j − i
. (3.5)

The energy for the periodic chain is given by

E′ = 2l + 1

4
− 1

2

l∑
k=1

1

3′2k + 1
4

. (3.6)

In the logarithmic form of the Bethe ansatz equations for the periodic chain, the set{3′k, k =
1, l} corresponds to a set of integers{I ′k, k = 1, l}:
I ′j = j − (l/2 + 1) I ′l+1−j = j for j = 1 to l/2

i.e. − l/2,−l/2 + 1, . . .− 2,−1 1, 2, . . . l/2− 1, l/2. (3.7)

The ground state of the open chain corresponds to an excited state of the periodic chain with
a hole exactly atIi = 0 in the connected integer set{Ii, i = 1, l + 1} for the ground state of
the periodic chain [17]. While the ground states of the periodic chain of odd length have spin
Sz = ± 1

2 and momentum±π/2, the state of the odd-length periodic chain corresponding to
the ground state of the even-length open chain hasSz = − 1

2 and momentum zero. From its
momentum, and from the fact that it has one hole we expect its energy, in the largel limit,
to be the ground state energy of the periodic chain plus the excitation energy for a magnon
of momentumπ/2: E′ = e0(2l + 1) + vs sin(k), vs = π/2, ande0 = 1

4 − ln 2 for the spin-12
chain. Comparing the expressions forE andE′, we can eliminate the summation over3 and
obtainE = e0l + e1 for the ground state of the open chain withe1 = (π − 1− 2 ln 2)/4. We
have checked this result from our numerical solution of the Bethe ansatz equations for finite
l, obtaining agreement to at least six decimal places. This result was derived earlier from the
Bethe ansatz equations by a somewhat different method [12,14,15].

To test the CFT predictions, we extract three estimates ofg(l) using equation (2.22) for
theS = 1 andS = 2 excited states and equation (2.42) for the ground state for chains with
up to 2000 sites with OBCs by solving equation (3.2) numerically. We show the threeg(l)

completely determined by the energies of these three states, respectively, in figure 1. The reason
that these three estimates ofg(l) do not agree exactly is because of the various corrections to
these energies of higher order ing(l). However, at largel these estimates should converge
sinceg(l) → 0. We see that the coupling constants indeed collapse into one value which
approaches zero as the chain length increases, thus verifying the CFT predictions. Previous
numerical studies for PBCs have verified finite-size scaling obtained by CFT [2, 10, 16]. We
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Figure 1. g(l) calculated by equations (2.22) and (2.42) from Bethe ansatz energies of spin-1
2

antiferromagnetic Heisenberg open chain (OBC). The threeg(l) are obtained from energies of
ground state, total spinS = 1 excited state andS = 2 excited state, respectively.

Figure 2. Theg(l) calculated from ground state of open chain (OBC) and the averageg(l) for
periodic [16] chain (PBC), for spin-12 antiferromagnetic Heisenberg model. The full curve is the

one-loop RG prediction [2],g(l) = g0(l0)/[1 + πbg0(l0) ln(l/ l0)] with b = 4/
√

3. g0(l0) is
determined by the average of open chain ground stateg(l) and the periodic chain averageg(l) at
the chain lengthl0 = 2048.

then compare theg(l) obtained from the OBCs with the one from PBCs in figure 2. We show
the ground stateg(l) for OBCs and the averageg(l) given by the ground state, the singlet
excitation, and the triplet excitation for PBCs. These data for PBCs were obtained in [16].
The twog(l) approach each other in the large-length limit. The one-loop RG prediction for
g(l) given in [2], g(l) = g0(l0)/[1 + πbg0(l0) ln(l/ l0)], with b = 4/

√
3 is also drawn in

figure 2. We use the average of theg(l) for periodic and open chains atl0 = 2048 to fixg0.
The one-loop RG prediction fitsg(l) at largel. So we see that the logarithmic corrections for
Heisenberg chains have been successfully predicted by CFT.

4. Correlation functions and 1/T1

Another application of the anomalous dimension of boundary operators is to Green functions
for a semi-infinite system. A time-dependent Green function at the boundary obeys the RG
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equation

[∂/∂ ln τ + β(g)∂/∂g + 2γ (g)]G(τ, g) = 0 (4.1)

whereγ is the anomalous dimension of the boundary operator whose Green function is being
calculated. This is given, to O(g), by equation (2.2).g(τ) in equation (4.1) is the effective
coupling constant at scaleτ . Solving this equation we obtain

〈φ(τ, 0)φ(0, 0)〉 → (ln |τ |)−4bn/b

τ 2xn
. (4.2)

Both the exponent,xn, and the power of the logarithm are different than what occurs in the
bulk. For the lowest-dimension boundary operator of spinS the factor of ln|τ | is raised to the
powerSL(SL + 1). In particular, for the spin operator at the boundary in the lattice Heisenberg
model, the correlation function behaves as

〈 ES0(τ ) · ES0(0)〉 → constant
(ln |τ |)2
|τ |2 . (4.3)

The imaginary part of the retarded Green function at zero frequency and finiteT , obtained
from the Fourier transform of equation (4.3), gives the NMR relaxation rate, 1/T1, for a chain
with non-magnetic impurities. This behaves as

1/T1 ∝ T [ln(T0/T )]
2 (4.4)

for some temperature scaleT0 of the order of the exchange energy. The 1/τ 2 power law was
first derived in [8], without consideration of logarithmic corrections. The linear power law in
1/T1, resulting from performing the Fourier transform, was first discussed, as far as we know,
in [18]. These authors also attempted to calculate the logarithmic correction. However, their
result, for which no derivation was given, differs from ours, containing [ln(T0/T )]4 rather
than [lnT0/T )]2. This behaviour is to be contrasted with that of the pure system, in which
1/T1 ∝ [ln(T /T0)]1/2, constant up to a log correction [5].

Of course, an actual experiment on a dopedS = 1
2 chain compound would presumably

average over all distances from the chain ends. (This is related both to the fact that the relaxing
nuclei can be at arbitrary locations and that even a nucleus near the end of a chain will have a
transferred hyperfine interaction with spins further away from the chain end.) We note that, at
T = 0 and ignoring log corrections, the spin self-correlation for a spin a distancex from the
chain end is given by [8]

〈 ESj (t) · ESj (0)〉 ∝ 2x/v

|t |
√
t2 − 4x2/v2

(4.5)

wherev is the spin-wave velocity. At sufficiently long times this decays as 1/t2 for all x.
However, fort � x/v it exhibits the bulk behaviour, decaying as 1/t . Thus we expect that
the zero-frequency finite-T Fourier transform, which determines 1/T1, will be essentially
constant (ignoring log corrections) down to a temperature of orderv/x, below which it will
vanish essentially linearly inT .

1/T1 has been measured [19] for the quasi one-dimensional antiferromagnetic compound
Sr2CuO3 obtaining apparent agreement with the field theory prediction [5],(ln T )1/2. Broad
shoulders observed in the NMR intensity [21] were interpreted as resulting from the distribution
of local susceptibilities predicted by field theory methods [20] for chains with free ends.
Possibly such data will also verify the distribution of relaxation rates resulting from impurities.

After this work was completed we managed to obtain a copy of a three-year-old preprint
[22], which was never published nor available on the xxx archive, and in which many of the
results obtained here were derived independently.
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