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Abstract. The effect of eulk marginal operator obhoundarycritical phenomena in two space—
time dimensions is considered. The particular case of an S)per% antiferromagnetic Heisenberg
chain, corresponding to a Wess—Zumino—Witten nonlireanodel, is solved. In this case, the
required renormalization group coefficient is associated with a novel operator product expansion
in which threeoperators approach the same point. Resulting logarithmic corrections occurring in
finite-size calculations and nuclear magnetic resonance experiments are discussed.

1. Introduction

Marginally irrelevant operators in two-dimensional conformal field theory (CFT) [1] lead to
logarithmic corrections to scaling behaviour. Because the corresponding coupling constant,
gD, renormalizesto zero very slowly, aslh / where! is a characteristic length or energy scale,
logarithmic corrections occur to virtualll quantities which can be measured experimentally

or simulated numerically. These create grave difficulties in obtaining agreement between
analytical theory and numerical simulations or experiment. The particular case:b&th§
Heisenberg antiferromagnetic chain has been discussed extensively. The correlation function,
initially predicted to decay as/t, instead decays &k r)Y/2/r [2,3]. To make matters worse,

the corrections to this result are only suppressed by additional power$rof &nd are highly
sensitive to finite-size effects. Similarly, the energy gap between the ground state and the first
excited (triplet) state behaves as [1]:

AE = @ 1‘ — ng_(l) (1.1)
I 12 3
whereuv is the spin-wave velocity. At very long lengths,
V3
1.2
8O = 2rini (12)

giving an additive logarithmic correction to the finite-size energy gap. Itis generally very hard

to actually observe this logarithmic behaviour unless chains with length of several thousand
can be studied. Fortunately, this is possible for Bethe ansatz integrable models like the
S = % Heisenberg chain. For shorter chains it is generally better to regaydas a free
parameter. Because equation (1.1) has been generalized to many other energy levels, all of
which receive corrections linear ig, this still has considerable predictive power. Indeed,
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fitting to expressions of this sort, which effectively subtracts off the leading logarithmic
correction to scaling, provides a practical method for numerically determining the universality
class of a Hamiltonian [2]. There are analogous finite-temperature corrections (for infinite-
length systems). These include an additivénlT correction to the susceptibility [4] and

a multiplicative (In 7)%2 correction to the nuclear magnetic resonance (NMR) relaxation
rate, T, [5]. Although experimental data have been fitted to these forms with apparent
success [6, 7] this is a very difficult exercise due to the slow variation and the presence of
various other types of corrections in any real material.

Another subject of current experimental and theoretical interest is the general area of
guantum impurity problems (QIPs). In the contextSot= % Heisenberg antiferromagnetic
chains, such a problem occurs for a semi-infinite chain, associated with the dynamics at the
chain end [8]. This model can be realized experimentally by dilute substitution of the magnetic
ion by a non-magnetic one, e.g. Zn substitution for Cu. Related QIPs involve the Kondo
problem and tunnelling through a single impurity in a quantum wire (or quantum Hall effect
edge states). The general renormalization group (RG) treatment of these problems gives fixed
points corresponding to conformally invariant boundary conditions imposed on a given bulk
CFT (for a review see [9]). In general, in such a theory, the effective Hamiltonian contains
both bulk and boundary operators. The bulk terms contain integrals over the half-line whereas
the boundary terms occur at the impurity locatien= 0. Bulk behaviour is unaffected by
boundary dynamics, although it must be appreciated that the decay of Green functions away
from the boundary is itself part of the boundary critical phenomena. Time correlation functions
at the boundary also involve exponents which characterize the boundary condition, as does
the finite-size spectrum with non-periodic boundary conditions. Boundary interactions cannot
affect the renormalization of bulk coupling constants. In most treatments of these problems so
far, any renormalization of boundary interactions by bulk interactions has also been ignored.
The justification for this is that the bulk system has been assumed to be at a bulk RG fixed point.
Any bulk operators present, apart from the fixed point Hamiltonian itself, are irrelevant and
can be ignored at low energies. Thus, at least in principle, crossover between boundary fixed
points can be treated independently of bulk renormalization. Strictly speaking, this is only
justified when the energy scales associated with the boundary renormalization are much smaller
than those associated with the bulk irrelevant couplings. This approximation is particularly
bad when there are marginally irrelevant bulk interactions present since they renormalize to
zero logarithmically slowly. When marginally irrelevant bulk operators are present we should
expect logarithmic corrections to exponents and finite-size scaling. However, the detailed
form of these corrections is characteristic of the boundary condition and is not simply related
to the log corrections in the bulk theory, nor to the finite-size scaling with periodic boundary
conditions (PBCs).

Itis the purpose of this paper to consider these logarithmic corrections to boundary critical
exponents and finite-size scaling with non-PBCs arising from a marginal bulk operator. In
the next section we calculate general formulae for the logarithmic corrections using CFT. In
section 3 we compare these formulae to results on the finite-size spectrumSfes %mhain
with open boundary conditions (OBCs), for lengths up to 2000, obtained from the Bethe ansatz.
In the final section we comment on the log corrections to correlation functions and the NMR
relaxation rate.

2. Conformal field theory results

As observed by Cardy [1], such logarithmic corrections generally result from corrections to
the anomalous dimensions of the various operatgrswhich are linear irg. The associated
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coupling constantsy,,, obey RG equations:

du,/dINL =[2 — y,]u, + O(u?) (2.1)
where

Yn = Xn *2Tbyg . (2.2)

Here the - - represents terms of higher ordergror in other irrelevant operators. Taking into
account the fact that itself also renormalizes leads to predictions of the various logarithmic
corrections. In particular, the finite-size states are in one-to-one correspondence with the
operators and their energy gaps are proportiong] td he coefficientsp, can be conveniently
determined from the operator product expansion (OPE) of the opefateith the marginal
operatorgp:

_bnd’n(z)
lz =212

¢ ()Pn(Z) — (2.3)

A calculation of any Green function involvingy, to the first order irg, encounters alogarithmic
ultraviolet divergence upon integratingiearz’. This implies the correction to the anomalous
dimension in equation (2.2). The finite-size spectrum is given by

2
E,— Eo~ %[xn +21b,g(D)]. (2.4)

The scaling dimension, of the corresponding operator is simply corrected by the anomalous
dimension term of first order ig which is replaced by the effective coupling at sdale

In the presence of a boundary, this calculation takes a rather unfamiliar turn because
the local marginal bulk operator, in general, becoriéscal in the presence of a boundary
condition. This follows from Cardy’s general approach to conformally invariant boundary
conditions, which are always assumed to obey

T.(2,0) = Tr(z,0) (2.5)

whereT, x are the left- and right-moving terms in the energy momentum tensor. $jnge
is a function of(+ — x) [(¢+ + x)] only, it then follows that we may regard the right movers on
the original physical space > 0 as the continuation of the left movers to the negative axis,

Tr(x) = T (—x) (x > 0). (2.6)

This observation allows the Hamiltonian to be written in terms of left movers only, but defined
on the entire real line. In particular, it implies that a generic local bulk operator, which can be
factorized into its left-moving and right-moving par@i (t — x) and 0,% (t + x) respectively,
becomedbilocal:

O(t, x) = 01 (t, x) 05(t, x) — OL(t, x)O?(t, —x). (2.7)

In particular, the bulk marginal operator becomes bilocal, introducing a novel complication
in calculating its effects perturbatively. Boundary operators are also drawn from the left-
moving sector only. We may determine the correction to the anomalous dimension of an
arbitrary boundary operato®, to first order ing, from the three-point functiond O ®1),
whereO is the marginal bulk operator. However, this three-point function must be calculated
in the presence of the boundary condition, upon which it depends. Furthermore, we see
from equation (2.7) that this three-point function effectively becomes a four-point function of
left-moving operators.

In general, some data about the boundary condition will be needed to calculate this four-
point function. As will be seen from the example considered below, it is sufficient to know the
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OPE of the chiral part of the bulk marginal operat@rz) with general boundary operators. We
consider a special case here, of some importance, for which this OPE can be readily calculated.
Let us consider the problem of &h= % Heisenberg chain with an OBC. The bosonized
form of this model, applicable at low energies, is the- 1 Wess—Zumino-Witten (WZW)

nonlinearc model. The marginal operator is quadratic in the chiral spin densjﬁeﬁ, and
is written as

H = Hy— g(87%//3)J, - Jx. (2.8)
Here the spin densities are normalized as
b 8ab
(JL(@)JLO) = 8n2?’ (2.9)

The factor of &2/+/3 is inserted so that the operator multiplied pin the Hamiltonian has
a unit-normalized two-point function, following the convention of Cardy [1]. The required
OPEs in this case follow from the basic one of the WZW model:

L @e@) = SLP@ (2.10)

2n(z — 7))

Here the general Virasoro primary operatinnay transform under an arbitrary representation
of SU(2), x SU(2)g. The finite-dimensional matrices{, are simply the representation of
SU (2) under which¢ transforms. Explicitly, if¢ transforms under the irreducible spfh
representation then there will be a multiplet(@F + 1) operators¢, and

Sep)t =) 5iEe”. (2.11)
B
Thus,
JL@) - Tr@$(&) = (@) + - (2.12)
42|z — 7|
and we see that the coefficidnt defined in equation (2.3) takes the value
25, -8
, = 2L Sk (2.13)
V3

Now consider a semi-infinite chain with a free boundary condition at the origin. This
boundary condition was treated using bosonization in [8]. The boundary condition is not only
consistent with equation (2.6) but also with its Kac—Moody generalization:

Jr(x) = Jp(—x). (2.14)

Equations (2.6) and (2.14) imply that the correlation functiori8©f x) andJ(z, x) are simply
the chiral correlation functions in the free WZW model. The boundary has no effect on them
apart from identifying left with right. The operator content and finite-size spectrum are drawn
from conformal towers of the left-moving Kac—Moody algebra only. It was shown in [8]
that, for an even-length chain, the spectrum consists of the identity conformal tower only. In
particular, the spin operator at the boundary becomes the (left-moving) spin dépé&ity))
of the WZW model with correlation functionx 1/72. The finite-size spectrum, with free
boundary conditions at both ends of a chain of lerigghgiven by

E—Eq= ?n (2.15)
wherex; is the scaling dimension of the corresponding (left-moving) operator. This differs
from the formula with PBCs, equation (2.4), by the replacemeiithyf 2/ corresponding to
doubling the system size due to the identification of equation (2.6)}a0 andx =/ and to
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the replacement of the scaling dimensiog- x; + xz by a left-moving scaling dimensiory,
only.

Let us now consider the logarithmic corrections to this formula for OBCs. The problem
again reduces to finding the correction to the anomalous dimension of a given opgrator,
first order ing whereg, is now aboundaryoperator. We might again attempt to obtain this
from an OPE but we must deal with the fact that the marginal operator isbiloval. The
obvious generalization of equation (2.12) is

JL(2) - JL(2)¢(0) ~ . (2.16)

I2ﬂ |2
This is not a conventional OPE because we are bringfinge operators to the same point
rather than just two. However, as will be argued below, it is nonetheless correct. Itis now easy
to calculate the correction to the anomalous dimension. A logarithmic ultraviolet divergence
is again encountered for any Green function involving the opetatto first order ing from
integrating over; near zero. However, this is reduced by a factor of two relative to the bulk
case becausegis only integrated over the half-plane rather than the entire plane. A convenient
ultraviolet cut-off is given by restricting the z integralltg > a. In the bulk case the excluded
region is a circle of radius around the origin but in the boundary case it is only a semi-circle
of radiusa. Our conclusion is thus that the anomalous dimension of a boundary operator is
given by equation (2.2) but with the coefficigntnow given by
by = — L 5L
V3
This differs from the bulk formula (2.13) only by the identificationsf with S; and by the
extra factor of% arising from the different integration region.
To complete our derivation we just need to justify the rather unorthodox three-operator
OPE occurring in equation (2.16). The validity of this formula can be understood by
considering the more general connected four-point function:

G = <fL(Z1) : fL(ZZ)¢A(O)¢B(T))connected (2.18)

We normalize the Virasoro primary boundary operagot, so that its two-point function is
given by

(2.17)

AB

8
A B _
(970" (1)) = oz (2.19)

We wish to consider the short-distance singularityGifi® whenzy, zo — 0. We claim that
this is given by

§L . §L (SAB
427120 (—T)%
The correctness of this result can be seen by considering the three different|diihitg

|z2l, |21 — z2| @nd|zz| < |zal, lz1 — z2| @and|z1 — z2| < |z, |z2]. In the first case, we can
obtain the Ieadlng singularity by using the OPEI@le) with ¢4 (0) and then the OPE of the
result withJ, (z»). This gives equation (2.20). The same singularity is obtained in the second
case. In the third case there should be no singularity of the fgim 1 z) because there is

no singular termin the OPEL (z1)- JL (z2) apart from the trivial one which does not contribute

to the connected Green function. These considerations uniquely fix all singulariGés iat

71, z2 — 0. Note that the crucial property of the boundary condition that is being used is that
the OPE of the spin-density operatdiswith arbitrary (Virasoro primary) boundary operators
has the same form as in the bulk. Now letting= z, z» = z* gives equation (2.16).

G"? —

(2.20)
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In the particular case where thig are the spin-density operatotk;,, we have calculated
G“® exactly and verified the form of the singularity. In this case we find

aab

7 . 7 a b — . 2.21
Wiz @) TE O (@) (27)*z122(7 — 2) (T — 22) @21

We see from equation (2.9) that the unit normalized operatgf is: 27+/2J%. Also, using
the fact that/ hasS; = 1 and thereforeS; - S, = S.(S;. + 1) = 2, we see that, in the limit
z; — 0, equation (2.21) agrees with equation (2.20).

Now let us consider the finite-size spectrum, examining the lowest energy excited state of
spinS. This is given by equation (2.15) except that the dimension of the (left-moving) field,
xz, must be replaced by the anomalous dimensjgn;This is given by equation (2.2) with,
now given by equation (2.17). Thus we obtain

v |:SZ B 27 S(S + l)g(l):| ‘
! V3

For exponentially long chains we may use the asymptotic forg(f g(!) — +/3/(4m Inl),
giving

EP— EQ~ (2.22)

S(S+1
g gopeny, TV g2 . 2.23
s 0 ! 2In! (223)

It is interesting to compare equation (2.23) with the corresponding result for PBCs [2]. If we
again consider the lowest energy state of given Spihis hasS, = Sz = S/2 and hence

per L per 27v [S§2 82
Eg —Ey ~ 7 [2 4Inl] (2.24)
The 1/1 terms are the same for open and PBCs but fHa Lterms are not. (We note that the
logarithmic corrections for OBCs were assumed to be same as the ones for PBCs in [10]).
We have also calculated the logarithmic correction to the ground state energy for OBCs.
Ignoring the irrelevant operator, the ground state energy for any one-dimensional Hamiltonian
whichrenormalizesto a CFT, defined on aninterval of lehgtith generic boundary conditions
at zero and consistent with equation (2.6), is

Eo(l) = eol + e1 — (mv/24l)c (2.25)

wherec is the central charge [11]. Note that the coefficient of s %1 times the value for
PBCs. Also note that an additional non-universal surface engrgppears when the boundary
conditions are non-periodic. Logarithmic corrections to this formula can be calculated by doing
perturbation theory in the marginally irrelevant coupling constafi), just as in the periodic
case. One finds that the correction afi(!) is universal. This must be separated from various
non-universal corrections g ande;. Once the correction to the/ Lterm of leading order in
g is calculatedg may be replaced by the effective coupling constant at $¢glé), resulting
in logarithmic corrections. In the case of PBCs, this leading correction was found tggBe O
By contrast, in the case of OBCs we find that it i&®).

Let us first consider the correction of©). From equation (2.8) this gives a correction to
the ground state energy

2, gl

?f’;g RACRACE (2.26)

This Green function is given in equation (2.9) for the case co. We may obtain the Green
function for finite length by a conformal transformation

(r' +ix') = e/DEHD) (2.27)

SES =
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giving
8“b
8r?[L sinzx]2’
The integral of equation (2.26) is ultraviolet divergent botl at 0 andx = /. We may insert

an ultraviolet cut-off on the integration region> a,l — x > a whereq is of order the lattice
spacing. This gives the ground state energy correction of first order in

(JE)IP(—x)) = (2.28)

SEY = —2g\/§% cot?. (2.29)

Now Taylor expanding in powers af [, we see that we obtain a cut-off dependent contribution
to the non-universal surface energyin equation (2.25), together with corrections afi(i/?):

243
SEY ~ —2V3, O/ 1?). (2.30)
a

Importantly, there is no term of @/ ).
We now push this calculation to second ordeg irThis term is given by

1 87'[2 2 [e%e) ) 1 N N N
8E82)=——[—g} / de / dxy / dxo(J, (1, x1) - T (7, —x1)J1 (0, x2)
\/§ —00 0 0

2
710, —x2)). (2.31)
Let us first evaluate this expression in the litnit> co. Using equation (2.21), we obtain
87'[2 2 3 o0 o dx1 de
SEY — — [— } —/ dr/ : 2.32
° \/ég @)t ) Jo 12+ (x1 = x2)?][T? + (x1 + x2)?] (2.32)

Note that we have inserted a factor of two here because equal contributions ariserfeam
zero andx nearl. The x-integrals can be calculated exactly and are ultraviolet finite, for
non-zeror:

2.2 oo
%) 8 d'L'
Thert integral is ultraviolet divergent. We cut off the integnal|, > o, whererg is of O(a/v).
This gives the second-order ground state energy correction:

g27T2

SEY — (2.34)

70

another cut-off dependent contribution to the surface eneggy,equation (2.25). To obtain
(SE((JZ) at finite/, we again use the conformal transformation of equation (2.27) to obtain

@) ' ! dxy dxp (r/20)*
SE;, = —2¢g dr . _ _ —.
—oo Jo I8iN(T/2D)[(x1 — x2)? +it]|?| sin(rr /2D [ (x1 + x2)% +it]|?
The x; integrals are again finite for non-zeto We again cut off the integral at|z| > .
Noting that the integrand is symmetric under— —x; or x, - —x and alsor — —r, it
is convenient to extend the integrals from—/ to ! and reduce the integral fromzg to oc.
This introduces a net factor (%f. It is now convenient to change the variables to

z; =gl (2.36)

(2.35)

and
u=mnrt/l. (2.37)
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The complex variables,;, are integrated around the unit circle. This expression now becomes

@_ &7 [ 2
SEO = —— du de_ de — 1 1
L Ju c ¢ z2(z1— 22€")(z1 — 22€67") (21 — 2, €) (21 — 7, €7")
(2.38)

whereug = nt,/l andC denotes the unit circle integration contour. Thentegral can now
be calculated by the standard contour integration method, with contributions from the poles at
z3le . The resultis

[o.¢]
SE@ — _onig?t f du cothu / dz, ‘2 ) (2.39)
° ! Juo ¢ (B-e)(B—e)
Also calculating the, integral by contour methods gives
*®  du
SEP = —n2g%(n/1 / . 2.40
0 g (/1) S (2.40)
Finally, performing this elementary integration gives
SE? — 2722 (n/l)— ~ g + 722 % 4+ O(10/ 12). (2.41)
0 g0 — 1 70 I

We have recovered the same cut-off dependent correction to the surface eneagyin
equation (2.34). More importantly, we have also obtained a term(df K which is cut-off
independenand therefore is expected to be universal. Thus, we obtain the log correction to
the ground state energy with OBCs:

EP(1) ~ eql +e1 — %[1 _ 24724 (1)2). (2.42)
For exponentially largé we may use equation (1.2) to write
9/2
EP() ~ eol + e — o |1 - L2 | 2.43
o () ~egl+ey o D)z ( )

As usual, the corrections to these formulae are only down by additional powets ahat is
1/In{. The corresponding formula for PBCs is

1) ~ ol - T[4 2/ VE] el — T 14 3B
EZ() ~ eol = [1+ (2% () /3] ~ el 5 [1+(lnl)3]. (2.44)

Among other differences, note that the log correctidesreasehe apparent value af for
OBCs butincreaseit for PBCs. The fact that the correctiondaoes like ¥(In1)? for OBCs
was obtained from the Bethe ansatz in [12], although the coefficient was not obtained.

3. Numerical results on finite-size spectrum

One application of the above results for boundary critical phenomena is to the numerical study

of finite-size scaling. We extract estimatesdf) defined in equations (2.22) and (2.42) from

the energies of finite-size sp'@antiferromagnetic Heisenberg open chains. The Hamiltonian

is

-1

H=Y"S-Su (3.1)
i=1

i=
1

where theS; are spin3

equation (3.1) are
<Ak+i/2>2’_ MoAe—Aj+i A+ Aj+i
Ak—|/2 j?gkAk_Aj_iAk"'Aj_i

operators. The Bethe ansatz equations [13] for the Hamiltonian of

(3.2)




Logarithmic corrections in quantum impurity problems 7823

wherel is the number of sites in the open chain. The roots can be numerically calculated [16].
The number of rootsy, determines the totaF component through the relatich = L/2— M.
In terms of the solutionsA, to the Bethe ansatz equations (3.2), the energy is given by

-1 1¢ 1
E=—— -2y —— | 3.3
4 Z;Af+1/4 (33)

The surface energy; = (m — 1 — 2In2)/4 for the two ends of open chain can be
exactly obtained. The rapiditigs\;, k = 1,1/2} solving the Bethe ansatz equations (3.2)
for the ground state of the open chain are all bigger than zero. Let us Ajdep that

A1 > Ay > -+ > Ajp 1 > Ay > 0. We can construct another set of rapidities
(A k=1,1}
A= —A; Al j = A for j=1tol/2 (3.4)
which solves exactly the following Bethe ansatz equations for a periodic chain of ldnigth 2
A/ +i 2 21+1 1 A/ —A/~+i
G
A —i/2 ik D= A=
The energy for the periodic chain is given by
2+1 1 1
"= - = — - (3.6)
4 2 ; AZ+1

In the logarithmic form of the Bethe ansatz equations for the periodic chain, tha& set =
1,1} corresponds to a set of integédg, k = 1, [}

[[=j—(1/2+] Ly j=1] for j=1tol/2
ie. —1/2,—1/2+1...—2 -1 12,...01/2=1,1/2. (3.7)

The ground state of the open chain corresponds to an excited state of the periodic chain with
a hole exactly af; = 0 in the connected integer sigt, i = 1,1 + 1} for the ground state of
the periodic chain [17]. While the ground states of the periodic chain of odd length have spin
§* = i% and momentumtrr /2, the state of the odd-length periodic chain corresponding to
the ground state of the even-length open chain$ias —% and momentum zero. From its
momentum, and from the fact that it has one hole we expect its energy, in the large
to be the ground state energy of the periodic chain plus the excitation energy for a magnon
of momentum/2: E' = eo(2 + 1) + v, sin(k), v, = 7/2, andeg = 5 — In 2 for the spinj
chain. Comparing the expressions folandE’, we can eliminate the summation ouverand
obtainE = ¢pl + ¢4 for the ground state of the open chain with= (r — 1 — 2In2)/4. We
have checked this result from our numerical solution of the Bethe ansatz equations for finite
[, obtaining agreement to at least six decimal places. This result was derived earlier from the
Bethe ansatz equations by a somewhat different method [12, 14, 15].

To test the CFT predictions, we extract three estimategofusing equation (2.22) for
theS = 1 andS = 2 excited states and equation (2.42) for the ground state for chains with
up to 2000 sites with OBCs by solving equation (3.2) numerically. We show the gtitee
completely determined by the energies of these three states, respectively, infigure 1. The reason
that these three estimatesgqf) do not agree exactly is because of the various corrections to
these energies of higher ordergit/). However, at large these estimates should converge
sinceg(l) — 0. We see that the coupling constants indeed collapse into one value which
approaches zero as the chain length increases, thus verifying the CFT predictions. Previous
numerical studies for PBCs have verified finite-size scaling obtained by CFT [2, 10, 16]. We
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OBC ground state -¢--

0.06 | Sreq e P
i Sz=2 & EI o
R 0.04 } E /’*'—"/, ]
% RSP el -©
0.02 | -
0 L L L L L L L L L
0 0.1 0.2 0.4 0.5

Figure 1. g(I) calculated by equations (2.22) and (2.42) from Bethe ansatz energies 03 spin-
antiferromagnetic Heisenberg open chain (OBC). The tligi@eare obtained from energies of
ground state, total spifi = 1 excited state anfl = 2 excited state, respectively.

0-06 L L L L L L L L L

OBC ground state -¢--
PBC average -+-
0.04 } one-loop RG —

0.02

0 0.1 O.% /1 I0.3 0.4

Figure 2. The g(/) calculated from ground state of open chain (OBC) and the averdgdor
periodic [16] chain (PBC), for spir%— antiferromagnetic Heisenberg model. The full curve is the
one-loop RG prediction [2]g(1) = go(lo)/[1 + wbgo(lo) In(l/1p)] with b = 4/4/3. go(lo) is
determined by the average of open chain ground gtdjeand the periodic chain averag€) at

the chain lengtlip = 2048.

then compare thg(/) obtained from the OBCs with the one from PBCs in figure 2. We show
the ground statg (/) for OBCs and the averagg(l) given by the ground state, the singlet
excitation, and the triplet excitation for PBCs. These data for PBCs were obtained in [16].
The twog(l) approach each other in the large-length limit. The one-loop RG prediction for
g() given in [2], g(1) = go(lo)/[1 + wbgo(lp) In(l/1p)], with b = 4/+/3 is also drawn in
figure 2. We use the average of th€) for periodic and open chains at= 2048 to fix go.

The one-loop RG prediction fifg(/) at largel. So we see that the logarithmic corrections for
Heisenberg chains have been successfully predicted by CFT.

4. Correlation functions and 1/T;

Another application of the anomalous dimension of boundary operators is to Green functions
for a semi-infinite system. A time-dependent Green function at the boundary obeys the RG
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equation

[9/0InT +B(g)d/dg + 2y (8)]G(r,g) =0 (4.1)
wherey is the anomalous dimension of the boundary operator whose Green function is being
calculated. This is given, to @), by equation (2.2).g(z) in equation (4.1) is the effective
coupling constant at scate Solving this equation we obtain

—4b, /b
(6 (z, 060, 0)) — 01D T @.2)
T n

Both the exponenty,, and the power of the logarithm are different than what occurs in the
bulk. For the lowest-dimension boundary operator of spihe factor of In|z| is raised to the
powerS; (S, +1). In particular, for the spin operator at the boundary in the lattice Heisenberg
model, the correlation function behaves as

- - In|z])?
(So(T) - Sp(0)) — constan§||i|72|). (4.3)
T
The imaginary part of the retarded Green function at zero frequency andTinibtained
from the Fourier transform of equation (4.3), gives the NMR relaxation r&tB,, for a chain
with non-magnetic impurities. This behaves as

1/ Ty o T[In(To/ T)]? (4.4)

for some temperature scalg of the order of the exchange energy. The2power law was

first derived in [8], without consideration of logarithmic corrections. The linear power law in
1/T;, resulting from performing the Fourier transform, was first discussed, as far as we know,
in [18]. These authors also attempted to calculate the logarithmic correction. However, their
result, for which no derivation was given, differs from ours, containingZgpi7)]* rather

than [In7y/T)]2. This behaviour is to be contrasted with that of the pure system, in which
1/ Ty o [In(T/ Tp)]*?, constant up to a log correction [5].

Of course, an actual experiment on a dopeg: % chain compound would presumably
average over all distances from the chain ends. (This is related both to the fact that the relaxing
nuclei can be at arbitrary locations and that even a nucleus near the end of a chain will have a
transferred hyperfine interaction with spins further away from the chain end.) We note that, at
T = 0 and ignoring log corrections, the spin self-correlation for a spin a distafrcen the
chain end is given by [8]

2x/v
|t]/12 — 4x2 /0?2
whereuw is the spin-wave velocity. At sufficiently long times this decays A€ for all x.
However, forr <« x/v it exhibits the bulk behaviour, decaying a1 Thus we expect that
the zero-frequency finité- Fourier transform, which determineg 7, will be essentially
constant (ignoring log corrections) down to a temperature of ardler below which it will
vanish essentially linearly if.

1/ T, has been measured [19] for the quasi one-dimensional antiferromagnetic compound
Sr,CuQ; obtaining apparent agreement with the field theory prediction([s])/2. Broad
shoulders observed inthe NMR intensity [21] were interpreted as resulting from the distribution
of local susceptibilities predicted by field theory methods [20] for chains with free ends.
Possibly such data will also verify the distribution of relaxation rates resulting from impurities.

After this work was completed we managed to obtain a copy of a three-year-old preprint
[22], which was never published nor available on the xxx archive, and in which many of the
results obtained here were derived independently.

(S;(1) - §;(0)) o (4.5)
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